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ABSTRACT

Current mobile devices are unable to execute complex vision ap-
plications in a timely and power efficient manner without offloading
some of the computation. This paper examines the tradeoffs that
arise from executing some of the workload onboard and some re-
motely. Feature extraction and matching play an essential role in
image classification and have the potential to be executed locally.
Along with advances in mobile hardware, understanding the com-
putation requirements of these applications is essential to realize
their full potential in mobile environments. We analyze the abil-
ity of a mobile platform to execute feature extraction and matching,
and prediction workloads under various scenarios. The best config-
uration for optimal runtime (11% faster) executes feature extraction
with a GPU onboard and offloads the rest of the pipeline. Alterna-
tively, compressing and sending the image over the network achieves
lowest data transferred (2.5× better) and lowest energy usage (3.7×
better) than the next best option.

Index Terms— mobile computing, offloading, image classifica-
tion, energy management

1. INTRODUCTION

Image classification in computer vision applications can be divided
into feature extraction and machine learning based prediction. In
computer vision, machine learning algorithms attempt to describe
the content of images based on the features in the image. This typ-
ically requires training on a large set of images to make predictions
about new images. Machine learning is used to predict if a specific
object (or class of objects) is present in an image. The accuracy of
the prediction is determined by the machine learning algorithm, the
amount of training data available, and the quality of the features. For
mobile platforms, machine learning algorithms require prohibitive
amounts of computation and storage. Training on a mobile device is
infeasible, in today’s technology, and is usually offloaded to a cloud
server. Google Glass for example, offloads classification and recog-
nition to Google’s data centers [1].

Figure 1 shows the conceptual stages of the image classifica-
tion pipeline. As technology improves, more of the pipeline will
be able to run locally, allowing applications to run without relying
on a cloud connection, should a network connection be unavailable.
Feature extraction and machine learning predictions must meet mo-
bile device computation and energy budgets. Moving feature ex-
traction onboard in a hybrid configuration will eliminate the need
to transmit an entire image, which reduces the data required to of-
fload. Currently, mobile developers in computer vision are work-
ing to find ways to reduce runtime, lower network usage and limit
energy consumption. For example, the EFFEX [2] processor was
developed to improve the performance of feature extraction algo-
rithms on energy-constrained mobile embedded platforms. Several
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Fig. 1: The computer-vision classification pipeline: (a) current (b)
near-future (hybrid) and (c) far-future mobile pipelines.

attempts have also been made to reduce network usage employing
energy-efficient lossy image compression before transmission [3, 4].
Huang et al. compare the performance and power characteristics of
4G LTE, WIFI and 3G during transmission [5]. Gordon et al. de-
veloped COMET, a framework to offload computation for multi-
threaded kernels that achieved a speedup of 2.9× and energy savings
of 1.51× on WIFI [6]. Maui [7] studies mobile offloading by mak-
ing decisions at runtime where it should execute the code stages.
Finally, CloneCloud [8] decides where to offload computation by
profiling components of the kernels before runtime. Our work ana-
lyzes the computations needed throughout the pipeline, allowing us
to identify which stages can be offloaded. Our work contributes the
following:

• Characterize the data transfers between stages in the com-
puter vision prediction pipeline

• Analyze the effects of image preprocessing (compression and
resizing) on runtime and prediction accuracy

• Identify where to run the stages of the pipeline to improve
runtime, lower network usage and limit energy consumption
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Fig. 2: Runtime of the stages in the prediction pipeline. Above each
execution time column is the prediction time of the model in mil-
liseconds. The size of each model is above each secondary column.

2. VISION PIPELINE

2.1. The Prediction Pipeline

We focus on feature extraction, description and matching, and pre-
diction that have the potential to be executed onboard—prediction
models are trained offline. Figure 2 suggests that most of the com-
putation is at the beginning of the pipeline with prediction in most
cases representing a small fraction. The benchmarks in this figure
are the machine learning models we use to make predictions. We
include the size of each model because they are trained offline and
require onboard storage.

2.2. Reducing Image Size

We explore the effects of image compression or resizing on the pre-
diction accuracy when applied before feature extraction. The JPEG
compression algorithm [9] comprises 2 steps. First, dividing the im-
age into 8x8 blocks of pixels and computing the frequency compo-
nents using a DCT. Second, each frequency component is quantized
according to a quantization factor (Q) which rounds low-occurring
frequency components to zero, retaining essential information in the
image. This is a lossy process where image information is lost but
we show in our results that it does not significantly impact predic-
tion accuracies. Figure 4 shows the differences in quality of two
compressed images compared to the original.

Image resizing also reduces the amount of data to transfer by
down-sampling the pixels in the image. We study the effects of JPEG
compression and image resizing on prediction accuracies in our re-
sults. Figure 3 compares the amount of data transferred for JPEG
compressed images varying the Q factor and resized images vary-
ing the resize percentage (results normalized to the original image).
We also show the effects of varying Q on the PSNR (applies only to
JPEG compressed images).

2.3. Network and Data Transfer

There are several scenarios where the mobile platform may be re-
quired to offload computation. For example, the case where onboard
prediction would consume too much of the onboard resources to
make a prediction in a reasonable time. To estimate the runtime
trade-offs of onboard computation versus offloading, we add the up-
link time to the total runtime. We study the following 3 scenarios:
1) prediction pipeline executed onboard, 2) preprocess the image and
offload the pipeline, and 3) offload after feature extraction. We study
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Fig. 3: Data-size sent of a compressed and resized image normalized
to original image, and the effects of JPEG compression on PSNR.

(a) (b) (c)

Fig. 4: JPEG compression: (a) Original image, (b) Q = 75, PSNR
39.9 dB, (c) Q = 10 PSNR 32.4 dB.

the size of data transiting between stages using Google’s protocol
buffers [10]. Table 1 shows the size of the data after each stage in
the pipeline for two different image sets. The Caltech data set is
used to measure prediction accuracies whereas the Samsung Galaxy
S3 images are much larger and have been used to show accurate run-
times in our final results.

Table 1: Payload Size

Image Image Size (KB) Feature Points (KB) Descriptors (KB)
Galaxy S3 2,394.23 507.6 5,844.7
Caltech Dataset 62.6 66.7 784.5

3. PLATFORMS

In the mobile world, device temperatures must be cool enough for
users to hold and must rely on small batteries. In most cases, the
mobile device will also be used to make predictions on many differ-
ent images using multiple classes. The devices are storage limited
which means all the prediction models cannot be stored locally and
must be retrieved from the cloud.

Mobile Platform with Accelerator is a Kayla mobile develop-
ment kit with a Tegra 3 and an embedded NVIDIA GPU as our on-
board accelerator. Figure 5 shows the potential of a GPU for feature
extraction and description loads with speedups of 29× and 85×.

Network Base Station is the link between the mobile platform
and the cloud; it incurs network constraints and delay.

The Cloud is assumed to processes all incoming requests with-
out queuing delay. The configuration is summarized in Table 2.

4. METHODOLOGY

4.1. System Setup

The configuration for our setup is outlined in Table 2. As noted
earlier we use a Kayla development board as our mobile platform.
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Fig. 5: Speedup of GPU vs Single-threaded. FAST is a feature ex-
tractor and SURF is a feature extractor and descriptor.

We use the newest OpenCV 2.4.6 [11] and CUDA 5.5 [12] versions
which now support ARM platforms. Currently, OpenCV has few
GPU implementations available of the benchmarks used.

4.2. Benchmarks

We use C++ implementations of the algorithms in the pipeline out-
lined in Figure 1 with training and prediction images from the Cal-
tech 256 dataset [13] and a Samsung Galaxy S3 mobile phone. Since
prediction is invariant of image size, prediction results are based
on models trained on the Caltech dataset with approximately 100
images/class averaged across benchmarks. We use 80% of the im-
ages for training and the rest for validation. Final runtime results are
based on images from the Galaxy S3 mobile phone. We use larger
images from the S3 for the image-size dependent components of the
pipeline (feature extraction, description, and matching) to give an
accurate estimate of runtime.

4.2.1. Feature Extractors

We use common feature extractors including FAST, SIFT, SURF and
ORB [14, 15, 16, 17]. Each of these feature extractors generate key-
points based on their implementation. FAST is a simple corner de-
tector whereas SIFT, SURF and ORB are more robust to image dif-
ferences such as scale, rotation, noise and illumination. We also use
GPU implementations of FAST and SURF.

4.2.2. Feature Description and Matching

The keypoints are used to create descriptors for the image which
cluster and describe a set of nearby keypoints. We use SIFT (single-
threaded) and SURF (single-threaded and GPU) as the two descrip-
tors in our pipeline. The descriptors are matched using a Brute-Force
matcher and FLANN [18].

4.2.3. Prediction Models

The models (Normal Bayes Classifier, Boost, SVM, Gradient Based
trees, Decision trees, and Regression trees) are trained in a 1-vs-all
configuration using the Bag of Visual Words model (BoVW). The
BoVW model extracts “words” of a class (such as the eyes, hands
and head of a person) and creates a vocabulary to train the mod-
els. Using a histogram, the trained models search for occurrences of
words describing the class in an image to make a prediction. Each
class (positive sample) has a set of trained models to predict on the
other classes (negative samples).

Table 2: Platform Configuration

Platform Configuration
Mobile Platform
OS Ubuntu 12.04 Linux 3.1.10-carma armv7l
Processor Quad-Core A9 (Tegra 3) @ 1.6GHz
Memory 2GB DDR3
L1 Cache 32KBi, 32KBD
L2 Cache 1MB
GPU NVIDIA GeForce GT640/GDDR5
Cloud Server
OS Ubuntu 12.04.3 Linux 3.5.0-39-generic x86 64
Processor 8 × Intel Core i7-3770 CPU @ 3.40GHz
Memory 24GB DDR3
L1 Cache 256KB
L2 Cache 8MB

4.3. Measurements

Our results focus on runtime, data-size, prediction accuracy and
power. We measure the runtime in the pipeline using the getTick-
Count() function. The runtime budget is defined as a reasonable
execution time to complete the pipeline. If one stage in a specific
configuration is slower than the overall runtime, it exceeds our
budget. This is the case for the FAST feature extractor on larger
images. To model the size of transitioning data, we use Google
protocol buffers, a binary format used for network serialization. We
omit larger prediction models such as the NormalBayesClassifier
because, when extrapolated to multiple classes, it would require
GBs of storage. Our prediction accuracy is the number of correct
predictions over the total predictions and we do not track false posi-
tives. Using [19], we measured the 4G LTE uplink bandwidth of the
Verizon network to estimate network latencies in our results.

5. RESULTS

In this section we show where to execute the prediction pipeline un-
der various constraints and the effects of image preprocessing on
prediction accuracy.

5.1. Effects of Image Preprocessing

Figure 7 shows a clear tradeoff between runtime and prediction ac-
curacy when down-sampling the image. As the image size is re-
duced and execution time decreases, prediction accuracy linearly
decreases. Conversely, in Figure 8, the variations in image com-
pression are small: the model accuracy varies by at most 2% com-
pared to the original image. There is a slight increase in runtime at
Q = 50 for the corner detector FAST because the quantization gen-
erates additional corners in its search window. Should the mobile
device offload the prediction pipeline, we recommend to compress
the image and send it over the network. We choose two competing
schemes to reduce image size: one scheme with Q = 10 and another
with a resizing percentage of 0.75 that have comparable prediction
accuracies (within 5%). Even though the two configurations exhibit
similar accuracies, we recommend compression because the amount
of data to send over the network is much smaller (see Figure 6 Data
Transferred entries).
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Fig. 6: Breakdown of total runtime for all configurations. Runtime values based on Samsung Galaxy S3 images. The bold box shows a
comparison of runtime, data transferred and energy for each configuration. The values for the recommended configurations are also in bold.
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Fig. 7: Effects of image resizing on prediction accuracy. Runtime
values based on the Caltech dataset images.

5.2. Offloading to the Cloud

The final results are presented in Figure 6 and are based on images
taken with a Samsung Galaxy S3. We measure peak-power for each
configuration and use LTE uplink power consumption measured in
[5] to calculate the energy values. We do not include the download
time from the server because it is negligible. The bold box shows
a final comparison of runtime, data transfer and energy consumed
for all configurations. Current configurations are either runtime or
data upload intensive. Preprocessing the image achieves a reason-
able runtime with low network usage. The time expelled compress-
ing the image is compensated by offloading the rest of the pipeline
instead of running it locally. As images taken on mobile devices
grow in size, this network usage will increase. Although the hybrid
approach is not energy efficient at the moment, in the future it will
become more competitive because the size of feature data increases
at a slower rate than image size. While a GPU-only approach without
offloading achieves the lowest data transferred, we do not consider it
a solution as it does not meet the power constraints of current mobile
platforms.
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Fig. 8: Effects of JPEG compression on prediction accuracy. Run-
time values based on the Caltech dataset images.

5.3. Onboard Prediction

We also recommend to offload prediction because mobile device
storage is limited. In the future when the entire pipeline can run
locally, the mobile device can store many small models onboard and
agglomerate results as a confidence value. Similarly, it can store
several more robust and larger models (such as the Normal Bayes
Classifier) and make a single prediction.

6. CONCLUSIONS

In this work, we performed the analysis of each stage needed in
the image classification pipeline and proposed an efficient solution
to maximize runtime and limit onboard resource usage. The best
configuration for optimal runtime (11% faster) executes feature ex-
traction with a GPU onboard and offloads the rest of the pipeline.
Alternatively, compressing and sending the image over the network
achieves lowest data transferred (2.5× better) and lowest energy us-
age (3.7× better) than the next best option.
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